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Abstract: The strange quark mass is determined from a new QCD Finite Energy Sum

Rule (FESR) optimized to reduce considerably the systematic uncertainties arising from the

hadronic resonance sector. As a result, the main uncertainty in this determination is due to

the value of ΛQCD. The correlator of axial-vector divergences is used in perturbative QCD

to five-loop order, including quark and gluon condensate contributions, in the framework

of both Fixed Order (FOPT), and Contour Improved Perturbation Theory (CIPT). The

latter exhibits very good convergence, leading to a remarkably stable result in the very

wide range s0 = 1.0 − 4.0 GeV2, where s0 is the radius of the integration contour in the

complex energy (squared) plane. The value of the strange quark mass in this framework

at a scale of 2GeV is ms(2 GeV) = 95 ± 5 (111 ± 6) MeV for ΛQCD = 420 (330) MeV,

respectively.
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1. Introduction

The strange quark mass is a very important QCD parameter measuring the strength of

chiral SU(3)⊗SU(3), and flavour SU(3) symmetry breaking. It also has a strong impact on a

variety of QCD applications in weak hadronic physics. For this reason, many attempts have

been made in the past to determine ms in various frameworks, e.g. QCD sum rules [1, 2],

and Lattice QCD [3]. The most recent QCD sum rule determinations from the pseudoscalar

channel have made use of state of the art results in perturbative QCD (PQCD) to five-

loop order [4]. In spite of this, the real uncertainty in the value of ms remains high

due to the hadronic resonance sector. In fact, beyond the kaon pole, the pseudoscalar

hadronic spectral function is not known from direct experimental mesurements. Two radial

excitations of the kaon have been observed [5], and a certain amount of theoretical input has

gone into attempts to build a reasonable spectral function incorporating these resonances.

However, inelasticity and non-resonant background are realistically impossible to model.

This constitutes a form of systematic uncertainty seriously limiting the precision of these

determinations. In summary, current information on the QCD side of the sum rules is not

matched in quality by the pseudoscalar hadronic sector. An attempt to rectify this situation

has been made recently [6] in the form of a new QCD Finite Energy Sum Rule (FESR)

involving as integration kernel a second degree polynomial which is required to vanish at

the peaks of the two pseudoscalar resonances. As a result of this, the kaon pole and the

QCD contributions dominate the FESR; the importance of the hadronic resonance sector

being reduced by up to an order of magnitude. This FESR was used in [6] to determine the

scalar and pseudoscalar correlators at zero momentum, and the strange quark condensate.

An upper bound on the strange quark mass was also obtained there, e.g. for the running

mass at a scale of 2 GeV this bound is

ms(2 GeV) ≤

{

121 MeV (ΛQCD = 330 MeV)

105 MeV (ΛQCD = 420 MeV) .
(1.1)
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In this paper we use this FESR in the pseudoscalar channel to determine the value

of strange quark mass to five-loop order in PQCD, and including the leading vacuum

condensates. We use the framework of Fixed Order Perturbation Theory (FOPT), as

well as Contour Improved Perturbation Theory (CIPT). We find that as a result of the

integration kernel in the FESR, the hadronic resonance contribution is considerably reduced

relative to the kaon pole. The latter is of the same order as the PQCD contribution, and

both are up to a factor five bigger than the resonance term, this being comparable to the

gluon condensate term. Numerically, the resonances add roughly 10% to the quark mass,

relative to the value obtained from the kaon pole and PQCD, while the gluon condensate

subtracts a similar amount, and the light-quark condensate reduces it by another 1-2 %.

Higher dimensional condensates and higher order quark-mass terms contribute negligible

amounts. Results from FOPT for the running strange quark mass at a fixed scale are

reasonably stable in a wide range of values of s0, the upper limit of integration in the

FESR (s0 ≃ 2.5 − 4.5 GeV2). However, in CIPT the stability is remarkable in an even

wider range, e.g. ms(2 GeV) changes by less than 1% in the range s0 ≃ 1.0 − 4.0 GeV2.

There is a very strong correlation between ms and the value of the QCD scale Λ, which

produces most of the uncertainty in the result for the strange quark mass (roughly 16 %).

However, unlike the situation in the hadronic resonance sector, the uncertainty in Λ can

be reduced, in principle, by improving the accuracy of the theoretical input, as well as of

the data used in its determination.

2. Fixed order perturbation theory

We first introduce the correlator of axial-vector divergences

ψ5(q
2) = i

∫

d4x eiqx
〈
∣

∣

∣
T (∂µAµ(x) , ∂νA†

ν(0))
∣

∣

∣

〉

, (2.1)

where ∂µAµ(x) = (ms + mu) : s(x) i γ5 u(x) : is the divergence of the axial-vector

current. To simplify the notation we shall use in the sequel ms +mu ≡ m. Finite Energy

Sum Rules (FESR) involving this correlator follow from Cauchy’s theorem in the complex

energy-squared, s - plane (see figure 1), i.e.

0 =

∫ s0

0
ds

1

π
Im ψ5(s) +

1

2πi

∮

C(|s0|)
ds ψ5(s)

≃

∫ s0

0
ds

1

π
Im ψ.

5(s) +
1

2πi

∮

C(|s0|)
ds ψQCD

5 (s) , (2.2)

and the contour integral is performed over a large circle where the exact ψ5(s) can be

safely replaced by its QCD counterpart ψQCD
5 (s). We introduce now an integration kernel

in the form of a second degree polynomial

∆5(s) = 1 − a0 s− a1 s
2 , (2.3)

where a0, and a1 are free parameters to be fixed by the requirement that ∆5(M
2
1 ) =

∆5(M
2
2 ) = 0, with M1,2 the masses of the two resonances in the strange pseudoscalar
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Figure 1: Integration contour in the complex s-plane.

channel, K(1460) and K(1830) [5]. This gives

a0 = 0.768 GeV−2 a1 = −0.140 GeV−4 . (2.4)

Writing explicitly the kaon pole, Cauchy’s theorem, eq. (2.2), becomes

−
1

2πi

∮

C(|s0|)
ds ψQCD

5 (s) ∆5(s) = 2 f2
K M4

K ∆5(M
2
K)

+

∫ s0

sth

ds
1

π
Im ψ5(s)|RES ∆5(s) , (2.5)

where sth = (MK + Mπ)2 is the resonance threshold, and fK = (1.22 ± 0.01)fπ =

113 ± 1 MeV. The introduction of the integration kernel ∆5(s) is expected to reduce the

importance of the hadronic resonances in the determination of ms. A posteriori, this is

in fact the case: in the stability region for ms(s0) the resonance contribution is roughly a

factor five smaller than the pole term, as well as the PQCD piece.

In the framework of FOPT αs and ms are taken as constants, and only terms involving

powers of log(−s/µ2) contribute to the contour integral. The renormalization group sum-

mation of leading logs is only carried out after the contour integration by setting µ2 = −s0.

The PQCD result for ψ5(s) up to four-loop order has been known for quite some time [7],

while the five-loop expression for its second derivative has been obtained recently [4]. In-

tegrating the latter twice provides ψ5(s) up to a non-contributing polynomial. We define

δ5(s0)|QCD ≡ −
1

2πi

∮

C(|s0|)
ds ∆5(s) ψ5(s)|QCD , (2.6)

and obtain in PQCD the following results

δ5(s0)|1LOOP =
m2(s0)

16π2
C01

[

s20
2

− a0
s30
3

− a1
s40
4

]

, (2.7)
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δ5(s0)|2LOOP =
m2(s0)

16π2

αs(s0)

π

[

C11

(

s20
2

− a0
s30
3

− a1
s40
4

)

− 2 C12

(

s20
4

− a0
s30
9

− a1
s40
16

)]

, (2.8)

δ5(s0)|3LOOP =
m2(s0)

16π2

[

αs(s0)

π

]2 {

C21

(

s20
2

− a0
s30
3

− a1
s40
4

)

− 2 C22

(

s20
4

− a0
s30
9

− a1
s40
16

)

− 6 C23

[

s20
2

(

π2

6
−

1

4

)

− a0
s30
3

(

π2

6
−

1

9

)

− a1
s40
4

(

π2

6
−

1

16

)]}

, (2.9)

δ5(s0)|4LOOP =
m2(s0)

16π2

[

αs(s0)

π

]3 {

C31

(

s20
2

− a0
s30
3

− a1
s40
4

)

− 2 C32

(

s20
4

− a0
s30
9

− a1
s40
16

)

− 6 C33

[

s20
2

(

π2

6
−

1

4

)

− a0
s30
3

(

π2

6
−

1

9

)

− a1
s40
4

(

π2

6
−

1

16

)]

+ 24 C34

[

s20
2

×

(

π2

6
−

1

4

)

− a0
s30
9

(

π2

6
−

1

9

)

− a1
s40
16

(

π2

6
−

1

16

)]}

. (2.10)

δ5(s0)|5LOOP =
m2(s0)

16π2

[

αs(s0)

π

]4 {

C41

(

s20
2

− a0
s30
3

− a1
s40
4

)

− 2 C42

(

s20
4

− a0
s30
9

− a1
s40
16

)

− 6 C43

[

s20
2

(

π2

6
−

1

4

)

− a0
s30
3

(

π2

6
−

1

9

)

− a1
s40
4

(

π2

6
−

1

16

)]

+ 24 C44

[

s20
4

×

(

π2

6
−

1

4

)

− a0
s30
9

(

π2

6
−

1

9

)

− a1
s40
16

(

π2

6
−

1

16

)]

+ 120 C45

[

s20
2

(

π4

120
−
π2

24
+

1

16

)

− a0
s30
3

(

π4

120

−
π2

54
+

1

81

)

− a1
s40
4

(

π4

120
−
π2

96
−

1

256

)]}

, (2.11)

where m ≡ ms + mu, and the constants Cij above, for three quark flavours, are:

C01 = 6, C11 = 34, C12 = −6, C21 = −105 ζ(3) + 9631/24, C22 = −95, C23 = 17/2,

C31 = 4748953/864−π4/6− 91519 ζ(3)/36+715 ζ(5)/2, C32 = −6 [4781/18− 475 ζ(3)/8],

C33 = 229, C34 = −221/16, C41 = 33532.26, C42 = −15230.6451, C43 = 3962.45493,

C44 = −534.052083, C45 = 24.1718750, and ζ(x) is Riemann’s zeta function. Regarding

the value of Λ entering αs(s0), since we are dealing with three quark flavours, it is simpler

to determine ΛQCD from the strong coupling obtained from τ -decay [5, 8]: αs(M
2
τ ) =

0.31 − 0.36, which gives ΛQCD = 330 − 420 MeV.

The leading non-perturbative contributions are due to the gluon and the light-quark

– 4 –
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condensates, which give

δ5(s0)|<G2> =
m2(s0)

8
〈
αs

π
G2〉

[

1 +
αs(s0)

π

(

11

2
+ 2 a0 s0 + a1 s

2
0

)]

, (2.12)

δ5(s0)|<ūu> = m2(s0) 〈msūu〉

[

1 +
αs(s0)

π

(

14

3
+ 2 a0 s0 + a1 s

2
0

)]

, (2.13)

where 〈αs

π
G2〉 ≃ 0.06 GeV4, and 〈q̄ q〉 ≃ (−250 MeV)3 [9]. We find that terms of

O(m4) and higher, as well as the strange quark condensate, give negligible contributions

in the region of stability (which turns out to be s0 ≃ 2.5− 4.5 GeV2). This is also the case

for the condensates of dimension-six and higher.

Turning to the hadronic sector, the spectral function in the pseudoscalar channel in-

volves in addition to the kaon pole, at least two radial excitations, the K(1460) and K(1830)

both with widths of about 250 MeV [5]. We follow the procedure outlined in [10], where

the resonance part of the spectral function is written as a linear combination of two Breit-

Wigner forms normalized at threshold according to chiral perturbation theory. The latter

incorporates the resonant sub-channel K∗(892) − π which is important due to the narrow

width of the K∗(892). Other embellishments are certainly possible, but then the presence

of the integration kernel ∆5(s) in eq. (2.5) makes these attempts unnecessary. In fact, the

resonance contribution to eq. (2.5) in a wide range of values of s0 is up to a factor five

smaller than the PQCD term, and a similar factor smaller than the kaon pole contribution.

Adding up eqs. (2.7)–(2.13) gives the left hand side of the FESR, eq. (2.5), which leads

to the results for ms(2 GeV) shown in figure 2. Curve (a) corresponds to Λ = 330 MeV, and

curve (b) to Λ = 420 MeV. In obtaining the results shown in figure 2, the light quark mass

has already been subtracted; its value can be safely estimated from the chiral perturbation

theory ratio [11]: ms

mq
= 24.4 ± 1.5, where mq = (mu + md)/2. For the running coupling

needed in eqs. (2.8)–(2.13), enough precision is obtained using the four-loop result. We have

also achieved enough precision with the four-loop result to convert the running quark mass

ms(s0) into ms(2 GeV). Numerically, the latter is ms(2 GeV) = 114±8 MeV (102±6 MeV),

for Λ = 330 MeV (Λ = 420 MeV), respectively. The breakdown of the various factors

contributing to the quark mass is as follows. To the basic result from PQCD and the

kaon pole, the hadronic resonances add roughly 10 % to the mass, the gluon condensate

reduces the mass by a similar amount, and the light quark condensate by an additional 1-2

%. The errors quoted above are only due to variations of ms(2 GeV) inside the stability

region s0 = 2.5 − 4.5 GeV2. A more realistic error can be established by assuming that

the resonance contribution to the quark mass has been understimated or overestimated by

a certain amount. Choosing this amount conservatively as 30 % produces an additional

uncertainty in ms (2 GeV) of ±4 MeV. In addition, assuming that the unknown six-loop

contribution is comparable to the five-loop one would reducems (2 GeV) by roughly 2 MeV.

Combining all uncertainties and using the breakdown described above, the final results for

the quark mass are

ms(2 GeV) =

{

114 ± 14 MeV (ΛQCD = 330 MeV)

102 ± 11 MeV (ΛQCD = 420 MeV) .
(2.14)

– 5 –
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Figure 2: Running strange quark mass in FOPT at a scale of 2GeV as a function of s0. Curve

(a) is for Λ = 330MeV, and curve (b) for Λ = 420MeV.

3. Contour improved perturbation theory

Contour Improved Perturbation Theory [12] has been shown to provide better convergence

than FOPT in the QCD analysis of the vector and axial-vector correlators in tau-lepton

decay. We find this to be also the case for our analysis of the contour integral in eq. (2.2).

Unlike the case of FOPT, where αs(s0) is frozen in Cauchy’s contour integral and the Renor-

malization Group (RG) is implemented after integration, in CIPT αs is running and the RG

is used before integrating. This is done through a single-step numerical contour integration

and using as input the strong coupling obtained by solving numerically the Renormalization

Group Equation for αs(−s) . This technique achieves a partial resummation of the higher

order logarithmic integrals, and improves the convergence of the PQCD series. CIPT has

been used successfully in QCD analyses of tau-lepton hadronic decays [9, 12]. In the case

of the pseudoscalar correlator involving the running quark mass as an overall multiplicative

factor, implementation of CIPT requires that not only the running coupling but also the

running quark mass be integrated around the Cauchy contour. The running quark mass

can be computed at each step by solving numerically the corresponding RGE. To establish

– 6 –
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notation and conventions, we write the RGE for the coupling as

s
d as(−s)

ds
= β(as) = −

∑

N=0

βN as(−s)
N+2 , (3.1)

where as ≡ αs/π, and for three quark flavours β0 = 9/4, β1 = 4, β2 = 3863/384,

β3 = (421797/54 + 3560ζ(3))/256. In the complex s-plane s = s0 e
ix with the angle x

defined in the interval x ∈ (−π, π). The RGE then becomes

d as(x)

dx
= −i

∑

N=0

βN as(x)
N+2 , (3.2)

This RGE can be solved numerically using e.g. a modified Euler method, providing as

input as(x = 0) = as(−s0). Next, the RGE for the quark mass is given by

s

m

dm(−s)

ds
= γ(as) = −

∑

M=0

γM aM+1
s , (3.3)

where for three quark flavours γ0 = 1, γ1 = 182/48, γ2 = [8885/9 − 160 ζ(3)]/64,

γ3 = [2977517/162 − 148720 ζ(3)/27 + 2160 ζ(4) − 8000 ζ(5)/3]/256. With the aid of

eqs. (3.1)–(3.2) the above equation can be converted into a differential equation for m(x)

and integrated, with the result

m(x) = m(0) exp

{

−i

∫ x

0
dx′

∑

M=0

γM [as(x
′)]M+1

}

, (3.4)

where the integration constant m(0) is identified as the overall multiplicative quark

mass in the expression for the pseudoscalar correlator, i.e. m ≡ [ms(s0)+mu(s0)]. Cauchy’s

theorem, and the resulting FESR will be written for the second derivative of ψ5(s), in which

case it is straightforward to show the following identity
∮

ds g(s)ψ5(s) =

∮

ds [F (s) − F (s0)] ψ
′′
5 (s) , (3.5)

where

F (s) =

∫ s

0
ds′

[

∫ s′

0
ds′′g(s′′) −

∫ s0

0
ds′′g(s′′)

]

, (3.6)

and g(s) is an arbitrary analytic function which we choose as g(s) = ∆5(s), with ∆5(s)

given in eq. (2.3). In this case instead of eq. (2.5) the FESR becomes

−
1

2πi

∮

C(|s0|)
dsψ

′′QCD
5 (s) [F (s) − F (s0)] = 2 f2

K M4
K ∆5(M

2
K)

+
1

π

∫ s0

sth

ds Im ψ5(s)|RES ∆5(s) , (3.7)

where

F (s) = −s

(

s0 − a0
s20
2

− a1
s30
3

)

+
s2

2
− a0

s3

6
− a1

s4

12
, (3.8)
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F (s0) = −
s20
2

+ a0
s30
3

+ a1
s40
4
, (3.9)

ψ
′′PQCD
5 (Q2) =

3

8π2

m2(Q2)

Q2

{

1 +
11

3

αs(Q
2)

π
+

(

αs(Q
2)

π

)2 [

−
35

2
ζ(3) (3.10)

+
5071

144

]

+O(α3
s)

}

,

with Q2 ≡ −q2, and Renormalization Group improvement has been used to dispose of

the logarithmic terms. The rather long four- and five-loop expressions can be found in [4]

and [7]. The left hand side of eq. (3.7) in PQCD can be written as

δ5(s0)|PQCD ≡ −
1

2πi

∮

C(|s0|)
ds ψ

′′PQCD
5 (s) [F (s) − F (s0)]

=
m2(s0)

16π2

4
∑

j=0

Kj
1

2π

∫ π

−π

dx
[

F (x) − F (s0)
]

× [as(x)]
j exp

[

− 2i
∑

M=0

γM

∫ x

0
dx′ [as(x

′)]M+1

]

, (3.11)

whereK0 = C01, K1 = C11+2C12, K2 = C21+2C22, K3 = C31+2C32, K4 = C41+2C42,

with Cik defined after eq. (2.11), and

F (x) =
4

∑

N=1

(−)N bN sN
0 eiNx , (3.12)

and b1 = −(s0 − a0s
2
0/2 − a1s

3
0/3), b2 = 1/2, b3 = −a0/6, and b4 = −a1/12. The

contribution of the gluon condensate to the left hand side of eq. (3.7) is

δ5(s0)|<G2> =
1

4

m2(s0)

s20

〈αs

π
G2

〉

|µ0

1

2π

∫ π

−π

dx e−2ix

× [F (x) − F (s0)]

[

1 +
16

9
as(µ0) +

121

18
as(x)

]

×exp

[

−2i
∑

M=0

γM

∫ x

0
dx′[as(x

′)]M+1

]

, (3.13)

where the scale µ0 ≃ 1 GeV2 appears in connection with the removal of logarithmic

quark mass singularities (see [2]). The light-quark condensate contribution is given by

δ5(s0)|<q̄q> = −2
m2(s0)

s20
〈msqq〉|µ0

1

2π

∫ π

−π

dx e−2ix

× [F (x) − F (s0)]

[

1 +
23

3
as(x)

]

×exp

[

−2i
∑

M=0

γM

∫ x

0
dx′[as(x

′)]M+1

]

. (3.14)
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Figure 3: Running strange quark mass in CIPT at a scale of 2GeV as a function of s0. Curve (a)

is for Λ = 330MeV, and curve (b) for Λ = 420MeV.

Substituting eqs. (3.11), (3.13) and (3.14) in the FESR, eq. (3.7), completes the ex-

pression giving the running quark mass m(s0). The breakdown of the various contributions

is similar to the case of FOPT. The Kaon pole and PQCD are the leading terms in the

FESR, the hadronic resonances add 8 - 9 % to the mass, the gluon condensate reduces it

by roughly the same amount, and the light-quark condensate induces a further reduction

of 1 -2 MeV. As expected, the convergence of the PQCD series is much better than the

FOPT counterpart. The results are shown in figure 3 for the running strange quark mass

at 2GeV. Curves (a) and (b) correspond to Λ = 330 (420) MeV, respectively. The stability

of the results, and the wide range of the stability region are quite remarkable. In fact, ms

(2 GeV) changes by not more than 1-2 MeV in the interval s0 = 1− 4 GeV2. This stability

is present at each loop level in PQCD, i.e. the quark mass as a function of s0 is essentially

flat if computed at one loop level, one- plus two-loop level, etc. . .

To arrive at a reasonable error, we proceed as before in FOPT, and assume that the

hadronic resonance contributions could be underestimated or overestimated by up to 30 %.

In this case, the uncertainty in ms (2 GeV) for Λ = 330 (420) MeV, would be ±3 (2) MeV.

In addition, if one were to assume the extreme scenario in which the six-loop contribution
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would be comparable to the five-loop one, then a further reduction in the mass by roughly

3 MeV would result for both values of Λ. Combining these two uncertainties linearly, the

final results are

ms(2 GeV) =

{

111 ± 6 MeV (ΛQCD = 330 MeV)

95 ± 5 MeV (ΛQCD = 420 MeV) .
(3.15)

A breakdown of the contribution of each loop-order in PQCD to the quark mass ms

(2 GeV) is as follows. For Λ = 330 MeV, the pole plus resonances plus condensates and

only the one-loop contribution would give ms (2 GeV) = 152 MeV, including the two-loop

term reduces this to ms (2 GeV) = 129 MeV, with the three-loop it gives ms (2 GeV) =

120 MeV, with up to four loops this becomes ms (2 GeV) = 115 MeV, and finally with

all five loops the result is ms (2 GeV) = 111 MeV. Similar relative differences are found

for Λ = 420 MeV. As seen from eq. (3.15) the main uncertainty is due to the value of

Λ. Finally, we have considered the impact on the above results from uncertainties in the

vacuum condensates as well as inclusion of higher order quark mass corrections. Allowing

the extreme case of an uncertainty of a factor two in the gluon condensate produces changes

in ms(2GeV) well within the errors given in eq. (3.15). The contribution of the strange

quark condensate is negligible, and that of the light (up- or down-) quark condensate, which

is known accurately, is at the level of 1%. Higher order quark mass corrections, as well as

vacuum condensates of dimension d = 6, have no impact on the results and can be safely

ignored in this method. The results above satisfy comfortably the upper bounds given in

eq. (1.1). In this particular application, CIPT has proven to be far better than FOPT.

Although the results from both methods agree within errors, CIPT leads to a remarkable

stability of ms(2 GeV), in a remarkable wide range of values of s0. For this reason, we

would not advocate combining the results from both methods.

4. Conclusions

The main advantage of using pseudoscalar correlators to determine the quark masses is that

they enter the QCD expressions as overall multiplicative factors, rather than as corrections

to a leading term. In addition, they involve the pseudoscalar pole with parameters well

known from experiment. Unfortunately, there is no direct experimental information on

the hadronic resonance spectral function, except for the masses and widths of the first few

resonances. This information is not enough to reconstruct reliably these spectral functions,

as inelasticity and non-resonant background effects are realistically impossible to guess.

For this reason, quark mass determinations from pseudoscalar correlators are affected by

endemic systematic uncertainties not subject to improvement. In this paper we have used

a new QCD FESR [6] for the strange pseudoscalar correlator, involving as integration

kernel a second degree polynomial which is required to vanish at the peaks of the first

two radial excitations of the kaon. As a result of this, the relative importance of the

hadronic resonance sector in the determination of the strange quark mass is considerably

reduced. In fact, this contribution turns out to be up to a factor five smaller than the
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leading contributions from PQCD and from the well known kaon pole. We have used

the techniques of FOPT as well as CIPT to compute the integrals in the complex energy

(squared) plane. The latter method is far superior to the former, and gives a running

mass at a fixed scale which is remarkably stable in a very wide range of s0, the radius of

the integration contour in the complex plane. For instance, for the strange quark mass at

2 GeV we find ms (2GeV) = 111 (95) MeV, for Λ = 330 (420) MeV, respectively, in the

wide range s0 = 1 − 4 GeV2. To arrive at a reasonable, but still conservative estimate

of the uncertainties we have assumed that (a) the resonance parametrization might be an

underestimate or an overestimate of the hadronic spectral function of up to 30 %, and (b)

the unknown six-loop PQCD term could be comparable to the five-loop term. Each of these

assumptions induces an uncertainty in the quark mass at the level of 3 %. Adding them

linearly gives the results in eq. (3.15). The main uncertainty is then due to Λ. However,

unlike the hadronic resonance spectral function, this error is subject to improvement. The

results from FOPT, eq. (2.14), are expectedly in agreement with those from CIPT. However,

in FOPT an additional sizable uncertainty arises from the variation of ms (2 GeV) in the

(narrower) stability range. Results from both methods satisfy the upper bound eq. (1.1).

Comparison of our results with previous determinations is made somewhat difficult due to

various reasons. Some of the very old determinations were afflicted by logarithmic quark

mass singularities in the correlators. This issue was only clarified in [2]. In addition, the

values of Λ used in the past were much lower than at present. Given the strong correlation

between Λ and the quark mass, this becomes a serious issue. Next, knowledge of the

PQCD contribution has improved considerably over the years, from two-loop level to the

current five-loop level. Last, but not least, the systematic uncertainties due to a lack of

direct experimental information on the hadronic resonance spectral function may have been

underestimated in the past. In any case, comparing the results in eq. (3.15) with the most

recent determinations [1, 3, 4], shows very good overall agreement.

In closing we wish to mention that in some applications of FESR, e.g. in tau-decay,

perturbative QCD does not appear to hold close to the real axis. It is not entirely clear

whether there is a problem with the data, or with PQCD itself. In any case this has led to

the proposal of weighted FESR with weight functions vanishing at s = s0 [13]. These so

called pinched FESR improve considerably the saturation of the Weinberg sum rules, and

resolve some inconsistencies in the determination of vacuum condensates in the vector and

axial-vector channels.

With this background it is reasonable to investigate the impact of such kernels in the

determination of the strange quark mass discussed here. First of all, the rate at which a

hadronic spectral function approaches its PQCD limit is channel dependent. Presumably,

potential duality violations share this feature. In the framework of the method discussed

here, it turns out that the ratio of the QCD and the hadronic contributions, which equals

the square of the running quark mass, leads to a value for ms(2 GeV) which is remarkably

stable as a function of the upper limit of integration s0, in an also remarkable wide range

s0 ≃ 1 − 4 GeV2. Such quality is hardly found in typical QCD sum rule applications. It

is then reasonable to conclude that in this particular channel, and using our integration

kernel, duality appears to be well satisfied. It should be stressed that the motivation for
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introducing the kernel eq. (2.3)in the pseudoscalar channel is rather different from that for

the pinched kernel in tau-decays. In fact, the hadronic spectral functions in the latter case

are known from experiment, while this is not the case for the pseudoscalar channel.

In any case, and to continue looking at this issue, we may consider the direct product

of the kernel eq. (2.3) and a pinched one. The first undesirable result of such a procedure is

that the kaon pole contribution now becomes a function of s0, and is numerically reduced.

This does not happen to the Weinberg sum rules, as they are valid in the chiral limit, in

which case the pseudoscalar meson pole contribution to the spectral function involves the

delta function δ(s). As a result of this, the pinched kernel does not affect this contribution.

This behaviour of the kaon pole contribution is contrary to the spirit of the method used

here. In fact, since there is accurate experimental information on this pole, one wishes to

enhance its contribution rather than reduce it. In any case, using this additional kernel

we have studied the convergence of the PQCD series, and the relative contributions of the

various terms, e.g. vacuum condensates, higher order quark-mass corrections, pseudoscalar

meson pole and resonances. The result is that the addition of the pinched kernel has only a

negative impact on the results. The convergence of the PQCD contributions is not as good,

and the stability region is considerably reduced. Numerically, though, the change in the

final value of ms(2 GeV) is well within the error given in eq. (3.15), but with a narrower

stability region. We must then conclude that there is no advantage in introducing an

additional pinched kernel in this channel.

Note added in proof. After this work was completed, a new and more accurate deter-

mination of αs(Mτ ) by the ALEPH collaboration has been released [14], which implies a

narrower range for Λ, i.e. Λ = 365 − 397 MeV. Using this in our determination we obtain

ms(2GeV ) = 99 ± 5(105 ± 6) MeV for Λ = 397(365) MeV, respectively. Combining both

values gives ms(2GeV ) = 102 ± 8MeV.
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